3044am永利集团
当前位置: 网站首页 >> 研究生教育 >> 研究生导师 >> 正文

杨士宽

2023年06月02日 10:30  点击:[]


 

 

姓名:

杨士宽

学位:

博士

职称:

正高级职称研究员

邮箱:

shkyang@zju.edu.cn

 

个人基本情况

杨士宽博士20166月加入浙江大学材料科学与工程学院,受聘为正高级职称研究员,2009年毕业于中国科学院合肥物质科学研究院,后在德国明斯特大学(2009-2011)及美国宾夕法尼亚州立大学(2011-2016)从事博士后研究工作。杨士宽博士迄今为止已发表100余篇论文,其中第一作者/通讯作者论文70余篇,包括Nature Communications3篇),Science Advances, PNAS, Adv. Mater., Adv. Funct. Mater, ACS Nano 等,研究成果被数十家国际知名媒体报道,包括ScienceDaily, KurzweiAl, NSF等。迄今为止,所发表论文被引用7000余次,h因子为41

主要致力于等离激元增强金属微纳传感材料和器件、SERS传感技术、仿生学等方面的研究。先后主持参与国家自然科学基金项目、湖北省自然科学基金项目、湖北省教育厅重点项目、湖北省重点实验室科研项目10余项。公开发表及录用SCI/EI/中文核心期刊论文30余篇,申请发明专利及软件著作权20余项,其中授权发明专利1项,授权实用新型15项,授权软件著作权3项。

2018年荣获湖北省高等学校教学成果一等奖,先后获得“校优秀教师”、“十堰市创先争优优秀共产党员”、“校优秀教师标兵”、“中共湖北省委高校工委高校系统践行群众路线好党员、好干部先进典型”等荣誉称号。

 

主要研究方向

1SLIPSERS平台的应用研究

2)基于BrochosomesSERS研究

3)模板辅助电化学可控制备多功能微纳米材料及传感器件构筑;

4)通过SERS实时检测建立贵金属成份和结构与电催化性能的内在关联

5)超亲水到超疏水按需调控及在SERS检测中的应用;

6)模板法构筑等离子体-光子晶体强耦合物理体系及新颖光学性能探索

7)电致变色材料结构设计;

8)模板辅助微纳结构电化学、湿化学可控合成

9)钙钛矿纳米晶的可控合成与按需掺杂及光学性能研究

10)无模板法程序化合成微纳材料;

11SERS性能研究。

12)电化学制备新型多孔薄膜材料及在柔性器件中的应用探索;

13)钙钛矿纳米晶体的制备及应用研究;

14) 新型单一基质白色发光材料的制备和光学性能研究

15)全无机钙钛矿纳米晶的可控合成与光学性能研究等

 

近年发表的论文

代表性论文

[1] X. Chen, Q. Ding, C. Bi, J. Ruan*, S. Yang*, Lossless enrichment of trace analytes in levitating droplets for multiphase and multiplex detection. Nature Communications, 2022, 13, 7807. 

[2] Y. Liu, N. Peng, Y. Yao, X. Zhang, X. Peng, L. Zhao, J. Wang, L. Peng, Z. Wang, K. Mochizuki*, M. Yue*, S. Yang*, Breaking the nanoparticle’s dispersible limit via rotatable surface ligands. Nature Communications, 2022, 13, 3581.

[3] Q. Ding, J. Wang, X. Chen, H. Liu, Q. Li, Y. Wang, S. Yang*, Quantitative and Sensitive SERS Platform with Analyte Enrichment and Filtration Function. Nano Lett. 2020, 20, 7304-7312.

[4] Y. Liu, L. Zhao, J. Lin, S. Yang*, Electrodeposited Surfaces with Reversibly Switching Interfacial Properties. Sci. Adv. 2019, 5, eaax0380.

[5] Y. Wang, L. Zhao, Y. Zhao, W. Y. Wang, Y. Liu, C. Gu, J. Li, G. Zhang, T. J. Huang, S. Yang*, Electrocarving during Electrodeposition Growth. Adv. Mater. 2018, 30, 1805686.

[6] S. Yang*, N. Sun, 2.B. M. Boschitsch, J. Wang, Y. Huang, and T. -S. Wong,* Ultra-antireflective Synthetic Brochosome, Nature Communications, 2017, 8, 1285.

[7] S. Yang*, X. Dai, B. M. Boschitsch, and T. –S. Wong,* Ultrasensitive Surface-Enhanced Raman Scattering Detection in Common Fluids. Proceedings of the National Academy Sciences, USA, 2016, 113,268-273. (Top-50 most read articles in Jan, 2016) (highly cited paper);

2023年发表论文

[1] N. An, C. Bi, H. Liu, L. Zhao, X. Chen, M. Chen, J. Chen, S. Yang*, Shape-Preserving Transformation of Electrodeposited Macroporous Microparticles for Single-Particle SERS Applications. ACS Applied Materials and Interfaces, 2023, 15, 6, 8286-8297.

[2] H. Liu. C. Xu, Q. Xia, Y. Ying, Q. Li, X. Zhao*, Y. Zhang*, S. Yang*, Tailorable and Angle-Independent Colors from Synthetic Brochosomes. ACS Nano, 2023, 17, 3, 2257-2265.

2022年发表论文

[1] X. Chen, Q. Ding, C. Bi, J. Ruan, S. Yang*, Lossless enrichment of trace analytes in levitating droplets for multiphase and multiplex detection. Nature Communications, 2022, 13, 7807.

[2] Y. Liu, N. Peng, Y. Yao, X. Zhang, X. Peng, L. Zhao, J. Wang, L. Peng, Z. Wang, K. Mochizuki*, M. Yue*, S. Yang*, Breaking the nanoparticle’s dispersible limit via rotatable surface ligands. Nature Communications, 2022, 13, 3581. 

[3] T. Hu, Y. Wang, L. Zhao, S. Yang*, Intermediate Valence Ion-Mediated Electrodeposition Process, Small, 2022, 18, 2203229. 

[4] Y. Wang, L. Zhao, A. Cui, X. Wang, Q. He, and S. Yang*, Sculpting Electrochemically Growing or Grown Microarchitectures, Small, 2022, 18, 2203628. 

[5] C. Xu#, H. Liu#, S. Yang*, Drawing at the Nanoscale through Macroscopic Movement. Small Methods, 2022, 6, 2200293.029 

[6] Q. Chen, L. Zhao, H. Liu, Q. Ding, C. Jia, S. Liao, N. Cheng, M.Yue, S. Yang*, Nanoporous silver nanorods as surface-enhanced Raman scattering substrates. Biosensors & Bioelectronics, 2022, 202, 114004. 

[7] H. Liu#, C. Xu#, Q. Ding, C. Zhao, X. Xiao*, S. Yang*,  Plasmonic Polycrystals within Microbowl Arrays. Advanced Optical Materials, 2022, 2200467.

[8] B. Zou, Y. Wang, S. Zhou*, S. Yang*,  Y. Wang*, Seed/ligand-cooperative growth of dense Au nanospikes on magnetic microparticles for SERS applications. Journal of Materials Chemistry C, 2022, 10, 3368-3374.

[9] B. Zou, Y. Wang, S. Zhou*, S. Yang*,  Y. Wang*, Seed/ligand-cooperative growth of dense Au nanospikes on magnetic microparticles for SERS applications. Journal of Materials Chemistry C, 2022, 10, 3368-3374. 

[10] S. Attique#, N. Ali#, T. Imran, S. Rauf, A. Khesro, S. Ali, W. Wang, R. Khatoon, A. Abbas, E. Ullah, S. Yang*, H. Wu*, An overview of the pressure- and strain-induced changes in the structural and optoelectronic properties of organometal halide perovskites. Solar Energy, 2022, 239, 198-220.

2021年发表论文

[1] C. Li, S. Xu, J. Yu, Z. Li, W. Li, J. Wang, A. Liu, B. Man*, S. Yang*, C. Zhang*, Local hot charge density regulation: vibration-free pyroelectric nanogenerator for effectively enhancing catalysis and in-situ surface enhanced Raman scattering monitoring, Nano Energy, 2021, 81, 105585.

[2] C. Hua, Z. Cheng, Y. Ma, H. He, G. Xu, Y. Liu, S. Yang*, G. Han, Enhanced Electrochromic Tungsten Oxide by Bio-inspred Brochosomes. Journal of the Electrochemical Society, 2021, 168, 042503.

[3] J. Hou, Y. Yu, S. Attique, B. Cao*, S. Yang*, Laurionite competes with 2D Ruddlesden-Popper perovskites during saturation recrystallization process, ACS Appl. Mater. Inter., 2021, 13, 6605.

[4] X. Kong, Y. Wu, F. Xu, S. Yang*, B. Cao*, Ultrasmall CsPbBr3 Quantum Dots with Bright and Wide Blue Emissions. Physica Status Solidi-Rapid Research Letters. 2021, 15, 2100134. 

[5] W. Li, Y. Wang, Y. Qi, D. Zhong, T. Xie, K. Yao, S. Yang*, M. Zhou*. Cupriferous Silver Peroxyslufite SUperpyramids as a Universal and Long-lasting Agent to Eradicate Multidrug-Resistant Bacteria and Promote Wound Healing. ACS Applied Bio Materials. 2021, 4, 3729-3738.

[6] S. Attique, N. Ali, S. Rauf, S. Ali, A. Khesro, R. Khatoon, E. U. Khan, F. Akram, S. Yang*, H. Wu*, Nontoxic and Less Toxic Hybrid Perovskites: a Synergistic Strategy for Sustaiaable Photovoltaic Devices. Solar RRL. 2021, 5, 2100212.

[7] Y. Huang, T. Xie, K. Zou, Y. Gu, G. Yang, F. Zhang, L. Qu*, S. Yang*, Ultrasensitive SERS Detection of Exhaled Biomarkers of Lung Cancer using a Multifunctional Solid Phase Extraction Membrane. Nanoscale 2021, 13, 13344-13352.

[8] W. Wang, Y. Yu, S. Attique, J. Hou, F. Jun, Y. Xie, L. Mao, X. Yu, X. Zhang, S. Wang, C. Wu, B. Cao*, S. Yang*. Sustainable Fabrication of Ultralong Pb(OH)Br Nanowires and Their Conversion to Luminescent Nanowires. Green Chemistry. 2021, 23, 7956-7962.

2020年发表论文

[1] Y. Yu#, J. Hou#, L. Zhang, Q. Sun, S. Attique, W. Wang, X. Xu, F. Xu, Z. Ci, B. Cao*, X. Qiao*, X. Xiao*, S. Yang*, Ultrastable Laurionite Spontaneously Encapsulates Reduced-dimensional Lead Halide Perovskites, Nano Letters 2020, 202316 - 2325. #共同一作)

[2] S. Dong, X. Zhang, Q. Li, C. Liu, T. Ye, J. Liu, H. Xu, X. Zhang, J. Liu, C. Jiang, L. Xue, S. Yang*, X. Xiao*, Springtail-inspired Superamphiphobic Ordered Nanohoodoo Arrays with Quasi-doubly Reentrant Structures, Small, 2020, 16, 2000779. (Cover paper). 

[3] S. Attique, et al. S. Yang*, A Potential Checkmate to Lead Bismuth in Organo-metal Halide Perovskites, Structure, Properties, and Applications, Advanced Science, 2020, 7, 1903143.

[4] S. Attique, N. Ali, R. Khatoon, S. Ali, A. Abbas, Y. Yu, J. Hou, B. Cao*, H. Wu*, S. Yang*, Aqueous Phase Fabrication and Conversion of Pb(OH)Br into CH3NH3PbBr3 Perovskite and Its Application in Resistive Memory Switching Devices, Green Chemistry, 2020, 22, 3608 - 3614.

[5] Q. Ding, J. Wang, X. Chen, H. Liu, Q. Li, Y. Wang, and S. Yang*, Quantative and Sensitive SERS Platform with Analyte Enrichment and Filtration Function, Nano Letters 2020, 20, 7304 -7312.

[6] S. Dong, Y. Wang, Z. Liu, W. Zhang, K.Yi, X. Zhang, X. Zhang, C. Jiang, S. Yang*, F. Wang*, X. Xiao*, Beehive-Inspired Macroporous SERS Probe for Cancer Detection through Capturing and Analyzing Exosomes in Plasma. ACS Appl. Mater. Inter. 2020, 12, 5136 - 5146.

 

[7] L. Zhang, Q. Sun, Y. Xu, L. Han, Q. Wang, Y. Yu, Z. Jin, S. Yang*, Z. Ci*, Self-assembled Template-confined Growth of Ultrathin CsPbBr3 Nanowires. Appl. Mater. Today 2020, 18, UNSP100449.

[8] N. Ali, S. Attique, S. Rauf, X. Wang, A. Khesro, S. Ali, M. I. Asghar, S. Yang, P. D. Lund, H. Wu, The Effect of Dodecylammonium Chloride on the Film Morphology, Crystallinity, and Performance of Lead-free Bi-based Solution-processed Photovoltaics Devices. Solar Energy 2020, 207, 1356 - 1363.

 

2019年发表论文

[1] Y. Liu, L. Zhao, J. Lin, S. Yang*, Electrodeposited Surfaces with Reversibly Switching Interfacial Properties, Science Advances, 2019, 5, eaax0380.

[2] Q. Ding, Y. Kang, W. Li, G. Sun, H. Liu, M. Li, Z. Ye, M. Zhou*, J. Zhou*, S. Yang*, Bioinspired Brochosomes as Broadband and Omnidirectional Surface-Enhanced Raman Scattering Substrates, J. Phys. Chem. Lett. 2019, accepted.

[3] X. Zhang, X. Zhang, C. Luo, Z. Liu, Y. Chen, S. Dong, C. Jiang, S. Yang*, F, Wang*, X. Xiao*, Volume-enhanced Raman scattering Detection of Viruses, Small, 2019, 15, 1805516. ( 封面论文)

2018及往年发表论文

[1] Y. Wang#, L. Zhao#, Y. Zhao, W. Y. Wang, Y. Liu, C. Gu, J. Li, G. Zhang, T. J. Huang, S. Yang,* Electrocarving during Electrodeposition Growth. Adv. Mater. 2018, 30, 1805686. (影响因子21.95;封底论文; #共同一作)

[2] Z. Li, J. Lin, Z. Liu, S. Feng, Y. Liu, C. Wang, Y. Liu, S. Yang,* Durable Broadband and Omnidirectional Ultra-antireflective Surfaces. ACS Appl. Mater. Inter. 2018, ACCEPTED. (影响因子8.1

[3] Q. Sun, C. Ni, Y. Yu, S. Attique, S. Wei, Z. Ci, J. Wang*, S. Yang,* Design Principle of All-inorganic Halide Perovskite-related Nanocrystals. J. Mater. Chem. C. 2018, ACCEPTED. (影响因子6.1

[4] Y. Wang, Y. Yu, Y. Liu, S. Yang,* Template-confiend Site-specific Electrodeposition of Nanoparticle Cluster-in-Bowl Arrays as SERS Substrates. ACS Sensors, 2018, ACCEPTED. (影响因子5.7

[5] X. Dai*, N. Sun, S. O. Nielsen, B. B. Stogin, J. Wang, S. Yang, and T.-S. Wong*, Hydrophilic Directional Slippery Rough Surfaces for Water Harvesting, Science Advances, 2018, 4, eaaq0919. (影响因子11.5

[6] Y. Wang, Y. Kang, W. Y. Wang, Q. Q. Ding, J. G. Zhou,* and S. Yang,* Circumventing Sliver Oxidation Induced Degradation of Surface-Enhanced Raman Scattering Substrates. Nanotechnology, 2018, 29, 414001. (影响因子3.4

[7] Z. Ye,* G. Sun, C. Sui, B. Yan, F. Gao, P. Cai, B. Lv, Y. Li, N. Chen, F. Xu, K. Wang, G. Ye, S. Yang, Surface Enhanced Raman Scattering Substrates Prepared by Thermal Evaporation on Liquid Surfaces. Nanotechnology, 2018, 29, 375502.

[8] T. Luo, X. Chen, P. Li, P. Wang, C. Li, B. Cao,* and S. Yang,* Laser Irradiation induced Laminated Graphene/MoS2 Composites with Synergistically Improved Tribological Properties. Nanotechnology, 2018, 29, 265704.

[9] Liu, Y. Hou, Z. Lin, S. Yang, C. Yu, C. Lei, X. Wu, D. He, Q. Jia, G. Zheng, X. Zhang,* L. Lei, Porous Cobalt Oxinitrade Nanosheets for Efficient Electrocatalytic Water Oxidation. ChemSusChem, 2018, 11, 1479-1485.

[10] S. Yang,* N. Sun, B. B. Stogin, J. Wang, Y. Huang, T. S. Wong,* Ultra-antireflective Synthetic Brochosomes. Nature Communications, 2017, 8, 1285.

[11] Y. Huang, B. B. Stogin, N. Sun, J. Wang, S. Yang, T. S. Wong,* A Switchable Cross-species Liquid Repellent Surfaces. Advanced Materials, 2017, 29, UNSP1604641.

[12] S. Yang,* X. Dai, B. M. Boschitsch, and T. –S. Wong,* Ultrasensitive Surface-Enhanced Raman Scattering Detection in Common Fluids. Proceedings of the National Academy Sciences, USA, 2016, 113,268-273. 

[13] X. Zhang, Z. Dai, X. Zhang, S. Dong, W. Wu, S. Yang,* X. Xiao,* C. Jiang, Recent Progress in the Fabrication of SERS Substrates based on the Arrays of Polystyrene Nanospheres. Science China-Physics Mechanics & Astronomy, 2016, 59, 126801.

[14] S. Yuan, Z. Qiu, H. Zhang, X. Qiu, C. Gao, H. Gong, S. Yang, J. Yu, B. Cao,* Growth Temperature-Dependent Performance of Planar CH3NH3PbI3 Solar Cells Fabricated by a Two-step Subliming Vapor Method Below 120 Degree C. RSC Advances, 2016, 6, 47459-47467.

[15] Y. Xie,  S. Yang, Z. Mao, P. Li, C. Zhao, Z. Cohick, P. –H. Huang, and T. J. Huang,* In Situ Fabrication of 3D Ag@ZnO Nanostructures for Microfluidic SERS Systems. ACS Nano, 2014, 8, 12175-12184.      

[16] S. Yang,* D. Slotcavage, J. D. Mai, W. Liang, Y. Xie, Y. Chen, and T. J. Huang,* Combining the Masking and Scaffolding Modalities of Colloidal Crystal Templates: Plasmonic Nanoparticle Arrays with Multiple Periodicities. Chem. Mater. 2014, 26, 6432-6438.

[17] S. Yang, M. I. Lapsley, B. Cao, C. Zhao, Y. Zhao, Q. Hao, B. Kiraly, J. Scott, W. Li, L. Wang, Y. Lei,* and T. J. Huang,* Large-Scale Fabrication of Three-Dimensional Surface Patterns Using Template-Defined Electrochemical Deposition. Adv. Funct. Mater. 2013, 23, 720-730.

 

[18] S. Yang, B. Kiraly, W. Y. Wang, S. Shang, B. Cao, H. Zeng, Y. Zhao, W. Li, Z. K. Liu, W. P. Cai,* and T. J. Huang,* Fabrication and Characterization of SiC Quantum Rings with Anomalous Red Spectral Shift Using Laser Ablation in Liquid. Adv. Mater. 2012, 24, 5598-5603.

[19] S. Yang, F. Xu, S. Ostendorp, G. Wilde, H. Zhao, and Y. Lei,* Template-Confined Dewetting Process to Surface Nanopatterns: Fabrication, Structural Tunability, and Structure-Related Properties. Adv. Funct. Mater. 2011, 21, 2446-2455.

[20] Y. Lei* (Advisor), S. Yang, M. Wu, and G. Wilde, Surface Patterning Using Templates: Concept, Properties and Device Applications. Chem. Soc. Rev. 2011, 40, 1247-1258.

[21] S. Yang, W. Cai*, L. Kong, and Y. Lei,* Surface Nanometer-Scale Patterning in Realizing Large-Scale Ordered Arrays of Metallic Nanoshells with Well-Defined Structures and Controllable Properties. Adv. Funct. Mater. 2010, 20, 2527-2533.

[22] S. Yang,* D. Slotcavage, J. D. Mai, F. Guo, S. Li, Y. Zhao, Y. Lei, C. E. Cameron, and T. J. Huang,* Electrochemically Created Highly Surface Roughened Ag Nanoplate Arrays for SERS Biosensing Applications. J. Mater. Chem. C 2014, 2, 8350-8356.

[23] S. Yang,* P. J. Hricko, P. –H. Huang, S. Li, Y. Zhao, Y. Xie, F. Guo, L. Wang, and T. J. Huang,* SERS Sensing Using Janus Particle Arrays Realized by Site-specific Electrochemical Growth. J. Mater. Chem. C 2014, 2, 542-547.

[24] S. Yang, F. Guo, B. Kiraly, X. Mao, M. Lu, K. Leong, and T. J. Huang,* Microfluidics Synthesis of Janus Particles for Biomedical Applications. Lab Chip, 2012, 12, 2097-2102.

[25] X. Hu, H. Gong, Y. Wang, Q. Chen, J. Zhang, S. Zheng, S. Yang,* and B. Cao,* Laser Induced Reshaping of Irregular Shaped Particles for Energy Saving Applications. J. Mater. Chem. 2012, 22, 15947-52.

[26] S. Yang,* and H. Zeng,* Hybrid Architectures: Spherical Au Nanoparticles on Cubic AgCl Sub-Micrometer Particles.Sci. Adv. Mater. 2012, 4, 449-454.

[27] S. Yang,* H. Zeng, H. Zhao, H. Zhang, and W. Cai*, Luminescent Hollow Carbon Shells and Fullerene-Like Carbon Spheres Induced by Laser Ablation with Toluene. J. Mater. Chem. 2011, 21, 4432-4436.

[28] S. Yang,* B. Cao,* L. Kong, and Z. Wang, Template-Directed Dewetting of a Gold Membrane to Fabricate Highly SERS-Active Substrates. J. Mater. Chem. 2011, 21, 14031-35.

[29] S. Yang,* J. Xu, Z. Wang, H. Zeng, and Y. Lei,* Janus Particle Arrays with Multiple Structural Controlling Abilities Synthesized by Seed-Directed Deposition. J. Mater. Chem. 2011, 21, 11930-5.

[30] S. Yang, and Y. Lei,* Recent Progress on Surface Pattern Fabrications Based on Monolayer Colloidal Crystal Templates and Related Applications. Nanoscale 2011, 3, 2768-62.

[31] S. Yang, P. S. Liu,* M. Fang, X. Luo, and W. Cai, Complex Nanostructures Synthesized from Nanoparticle Colloids under an External Electric Field. Nanoscale 2011, 3, 3933-40.
[32] S. Yang,* W. Li, B. Cao, H. Zeng, and W. Cai*, Origin of Blue Emission from Silicon Nanoparticles: Direct Transition and Interface Recombination. J. Phys. Chem. C 2011, 115, 21056-62.
[33] S. Yang, W. Cai*, H. W. Zhang, H. B. Zeng, and Y. Lei,* A General Strategy for Fabricating Unique Carbide Nanostructures with Excitation Wavelength-Dependent Light Emissions. J. Phys. Chem. C 2011, 115, 7279-84.

[34] H. Zeng,* S. Yang,* and W. Cai, Reshaping Formation and Luminescence Evolution of ZnO Quantum Dots by Laser-Induced Fragmentation in Liuqid. J. Phys. Chem. C 2011, 115, 5038-43.
[35] S. Yang,* W. Cai,* H. Zhang, X. Xu, and H. Zeng, Size and Structure Control of Si Nanoparticles by Laser Ablation in Different Liquid Media and Further Centrifugation Classification. J. Phys. Chem. C 2009, 113, 19091-5.
[36] S. Yang, W. Cai*, H. Zeng, and X. Xu, Ultra-fine beta-SiC Quantum Dots Fabricated by Laser Ablation in Reactive Liquid at Room Temperature and Their Violet Emission. J. Mater. Chem. 2009, 19, 7119-23.
[37] S. Yang, W. Cai*, G. Liu, and H. Zeng, From Nanoparticles to Nanoplates: Preferential Oriented Connection of Ag Colloids during Electrophoretic Deposition. J. Phys. Chem. C 2009, 113, 7692-6.
[38] S. Yang, W. Cai,* G. Liu, H. Zeng, and P. Liu, Optical Study of Redox Behavior of Silicon Nanoparticles Induced by Laser Ablation in Liquid. J. Phys. Chem. C 2009, 113, 6480-4.
[39] S. Yang, W. Cai,* J. Yang, and H. Zeng, General and Simple Route to Micro/Nanostructured Hollow-Sphere Arrays Based on Electrophoresis of Colloids Induced by Laser Ablation in Liquid. Langmuir 2009, 25, 8287-91.

 

 

上一条:赫明月
下一条:Unal Yildirim

关闭